A model for inelastic transport through atomic surface wires

Serge Monturet
Centre d'Elaboration de Matériaux et d'Etudes Structurales
CEMES - CNRS - Toulouse

AtMol International Workshop 2012, Barcelona, Spain
A model for inelastic transport through atomic surface wires

1. Short introduction
2. Random distortion of the wire
3. Mixed quantum/classical dynamics
4. A quantum model for transitions
1. Atomic wires

One dimensional atomic wire: dangling bond wire at the SiH surface

Transport calculation and heating
2. Random distortions

Linear atomic gold wire

Displacements are given by a uniform random distribution.

The curves show the dependence of the transmission on the amplitude of the displacements.

Work of Eeva Niemi in Toulouse, to be published.
2. Random distortions

1D dangling bond wire

Displacements are given by a uniform random distribution.

The curves show the dependence of the transmission on the number of atomic layers displaced. Maximum amplitude is 20% of the Si-Si distance.

Work of Eeva Niemi in Toulouse, to be published.
3. Ehrenfest dynamics

The model

\[h = \begin{pmatrix} E & t & 0 \\ t & E & t \\ 0 & t & E \end{pmatrix} \]
3. Ehrenfest dynamics

The model
3. Ehrenfest dynamics

The model

\[h(R) = \begin{pmatrix} E & t & 0 \\ t & E(R) & t \\ 0 & t & E \end{pmatrix} \quad \text{and} \quad E(R) = e + \frac{1}{2}K(R - R_{eq})^2 \]

- **Nuclear coordinate** « R » representation, **classical** harmonic oscillator
- **Electronic coordinate** State representation, explicit **quantum** dynamics
3. Ehrenfest dynamics

The method

Propagate the wave function

\[i\hbar \frac{\partial \psi(r, t; R)}{\partial t} = \hat{h}(r; R)\psi(r, t; R) \]

Compute the quantum force

\[F^q = -\nabla_R \langle \psi | h | \psi \rangle \]

Compute positions and velocities

\[
\begin{align*}
\dot{R} &= \frac{\hat{P}}{M} \\
\dot{P} &= F^q + F^{cl}
\end{align*}
\]
3. Explicit dynamics

The method

Mean field theory guarantees the conservation of the total energy throughout the propagation

- **Electronic part**
 Direct diagonalisation or short iterative Lanczos

- **Classical part**
 Velocity-corrected Verlet

- **Force**
 Finite differences

\[i\hbar \frac{\partial \psi(r, t; R)}{\partial t} = h(r; R)\psi(r, t; R) \]

\[F^q = -\nabla_R \langle \psi | h | \psi \rangle \]

\[\begin{align*}
\dot{R} &= \frac{P}{M} \\
\dot{P} &= F^q + F^{cl}
\end{align*} \]
3. Ehrenfest dynamics

Some results: positions and velocities

Frequency 30 meV
(Spring constant 6 eV Å⁻²)
(Time step 10⁻³ fs)

Starting parameters:
- Zero velocity
- Displacement: 20% of Si-Si distance along dangling bond rows

Graph showing displacement and velocity over time.
3. Ehrenfest dynamics

Some results: displacements

Position as a function of e. Coupling $t = 2.5$ eV.
3. Ehrenfest dynamics

Some results: displacements

Position as a function of e. Coupling $t = 2.5 \text{ eV}$.

![Graph showing nuclear displacement as a function of time for different coupling energies.](image1)

![Graph showing on-site energy distribution.](image2)
3. Ehrenfest dynamics

Some results: the force

e = 0 or 10 eV with coupling t = 2.5 eV
3. Ehrenfest dynamics

Calculations with 10 vibrating sites

Forces applied on each nuclei
3. Ehrenfest dynamics

Calculations with 10 vibrating sites

Forces applied on each nuclei
3. Ehrenfest dynamics

Calculations with 10 vibrating sites

Ehrenfest dynamics: energy conservation plot
3. Ehrenfest dynamics

Heating: the electrons release energy to the nuclear degrees of freedom irreversibly.
4- A quantum model

Motivation: Are there any rules for vibrational transitions?
4- A quantum model

6 states : 3 electronic states coupled to a vibration (n=0, 1)
4- A quantum model

6 states: 3 electronic states coupled to a vibration (n=0, 1)

| \(\langle i \rangle \otimes \langle n \rangle \) |

\[| i = 1 \rangle \quad | i = 2 \rangle \quad | i = 3 \rangle \]

n = 1 excited

n = 0 ground
4- A quantum model

6 states: 3 electronic states coupled to a vibration (n=0, 1)

t: electronic coupling between states in each vibrational subspace
m: vibrational coupling

$n = 1$
excited

$n = 0$
ground

$| i = 1 >$ $| i = 2 >$ $| i = 3 >$
4- A quantum model

Behaviour of the population of the ground state (n=0)
4- A quantum model

Populations of each individual state $|i, n>$
4- A quantum model

Calculation of the populations

\[\rho_{ii} = \langle i | \hat{\rho} | i \rangle = \langle i | \Psi \rangle \langle \Psi | i \rangle \]

\[\rho_{ii} = \sum_{n,m} C_n(0) C_m^*(0) \langle i | n \rangle \langle m | i \rangle e^{-i(\varepsilon_n - \varepsilon_m)t} \]
4- A quantum model

Calculation of the populations

\[\rho_{ii} = \langle i | \hat{\rho} | i \rangle = \langle i | \Psi \rangle \langle \Psi | i \rangle \]

\[\rho_{ii} = \sum_{n,m} C_n(0) C_m^*(0) \langle i | n \rangle \langle m | i \rangle e^{-i(\varepsilon_n - \varepsilon_m)t} \]

Coefficient associated to frequency \(\omega_{nm} \)
4- A quantum model

Calculation of the populations

\[\rho_{ii} = \langle i \mid \hat{\rho} \mid i \rangle = \langle i\mid \Psi \rangle \langle \Psi \mid i \rangle \]

\[\rho_{ii} = \sum_{n,m} C_n(0) C^*_m(0) \langle i \mid n \rangle \langle m \mid i \rangle e^{-i(\varepsilon_n - \varepsilon_m)t} \]

Coefficient associated to frequency \(\omega_{nm} \)
4- A quantum model

Largest coefficient as a function of the vibrational coupling m

Resonant case, $e = 0.0$

![Graph showing the largest coefficient as a function of vibrational coupling m]
4- A quantum model

Largest coefficient as a function of the vibrational coupling m

Resonant case, $e = 0.0$

$e = 0.25$ eV
4- A quantum model

Largest coefficient as a function of the vibrational coupling \(m \)

\[e = 0.50 \text{ eV} \quad \text{and} \quad e = 0.25 \text{ eV} \]
4- A quantum model

Largest coefficient as a function of the electronic coupling t

Resonant case, $e = 0.0$
4- A quantum model

Largest coefficient as a function of the electronic coupling t

Resonant case, $e = 0.0$

$e = 0.25$ eV
Conclusions

Work in progress

➢ Find a suitable model to describe dissipation in the quantum/classical model

➢ Keep exploring the behaviour of the quantum model to find a suitable set of parameters and perhaps a rule

Acknowledgements: Christian Joachim

Funding: AtMol project